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ABSTRACT 
 
 A spectrogram is a two-dimensional depiction of a waveform or transfer function in which frequency is 
depicted on one axis and time is depicted on the other. The level is plotted against frequency and time by using a 
color or gray scale. If the time resolution is constant, the display is usually referred to as a Fourier transform 
spectrogram. If the time resolution is scaled to the frequency, it is usually referred to as a wavelet transform 
spectrogram. In this paper, we present a novel and efficient method for calculating a wavelet transform spectrogram, 
which is optimized for the analysis of loudspeaker transient response. The new method employs complex 
convolution of the frequency response, rather than explicit time domain windowing or the wavelet transform.  
 

0 INTRODUCTION 

0.1 Acoustical Response Displays 

 The most commonly used displays of 
acoustical transfer functions of loudspeaker systems 
are frequency response magnitude and phase, and 
impulse response. A frequency response display 
gives detailed frequency content but obscures the 
response against time. The impulse response displays 
the response against time, but obscures the frequency 
content. An intermediate form of display, the 
spectrogram, represents the frequency content as a 
function of time. These three dimensional displays 
depict time on one axis, frequency on the other axis, 

and magnitude as a color or gray scale value. 
Because the spectrogram displays frequency as well 
as time, it offers valuable insights into the behavior 
of loudspeakers. Figures 0.1.1, 0.1.2, and 0.1.3 show 
three different displays of the transfer function of a 
high frequency horn.  While all three depictions 
represent the same information, the spectrogram 
gives the best visual indication of the frequency 
dependent transient response. 
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Figure 0.1.1 Impulse Response of an HF Horn 
 

Figure 0.1.2: Frequency Response of an HF Horn  
  

Figure 0.1.3: Wavelet Spectrogram of an HF Horn 
 
0.2 Spectrogram Displays 
 
 Several methods exist for calculating 
spectrograms, including the windowed FFT method 
(WFT), and the wavelet transform.  
 The windowed FFT method produces a 
spectrogram by applying a data window to the 
impulse response and computing the FFT of the 
windowed data. The window is progressively shifted 
in time to obtain a frequency response for each 
discrete time.  Figure 0.2.1 shows the effective basis 
function for the WFT.   
 The width of the window corresponds to a 
small multiple of the period at low frequencies, and 
to a large multiple of the period at high frequencies. 
Consequently, low frequencies tend to be displayed 

with inadequate frequency resolution, and high 
frequencies tend to be displayed with inadequate time 
resolution.  
 The wavelet transform method is based on a 
mother wavelet, and scaled and time-shifted versions 
of the mother wavelet.  The impulse response is 
essentially re-stated as the sum of a series of wavelets 
of various lengths.   
 Since the width of the wavelets is inversely 
scaled to frequency, the time resolution is a constant 
number of periods, which in the frequency domain 
equates to a constant percentage bandwidth or 
fractional octave resolution.  Short basis functions 
represent high frequencies with fine time resolution.  
Long basis functions represent low frequencies with 
coarse time resolution. The varying length of the 
basis functions is illustrated in Figure 0.2.1.  
Unfortunately, the wavelet transform is 
computationally expensive, especially for optimal 
wavelet shapes. Many references on wavelet theory 
are available including [1], [2], [3], and [4]. 

 
Figure 0.2.1: Windowed FFT Time-Frequency 
Plane vs. Wavelet Transform Time-Frequency 
plane 
 
0.3 Overview 
 
 In the April, 2000 issue of the Journal of the 
Audio Engineering Society [5], Hatziantoniou and 
Mourjopoulos presented methods for calculating 
fractional-octave smoothing, and identified the 
windowing property of complex convolution. The 
method presented here expands on this work, in order 
to implement an efficient method for calculating 
spectrograms. 
 In this new method, a complex frequency 
response is “smoothed” by applying a low pass filter 
to the complex frequency data. For each successive 
time increment, the phase response of the frequency 
data is shifted by an amount determined by the 
specified time increment. The efficiency of the 
method is due in large part to a novel implementation 
of the smoothing filter. The zero-phase-shift low pass 
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filter is implemented with forward and backward 
passes of an IIR filter.  
 In this paper, we will describe the 
implementation of the new method, and give several 
examples of its use. We will give examples of the 
spectrogram’s ability to expose subtle loudspeaker 
transient response aberrations. And, we will discuss 
the resolution limitations of spectrograms. 
 Spectrograms are subject to the generalized 
Heisenberg uncertainty principle, which states that it 
is not possible to be precise simultaneously in the 
time domain and the frequency domain. Fine 
frequency resolution can only be obtained if the time 
resolution is coarse and vice versa. The best 
resolution trade-off is achieved when the time 
window is Gaussian; which can be approached 
arbitrarily closely by increasing the order and/or 
complexity of an IIR smoothing filter. 

1 THEORETICAL BACKGROUND 

1.1 Time and Frequency Resolution 
 
 A central concept governing spectrogram 
displays is the inverse relationship between time and 
frequency. Precise time information can only be 
obtained by sacrificing frequency precision.   
 A brief explanation of the WFT method 
should illuminate this concept. In the WFT method, 
the impulse response is multiplied by a window 
centered at the specified time. Then, the FFT of the 
windowed portion of the signal is calculated, and 
displayed as one column of data - the frequency 
response at that point in time. This process is then 
repeated for each column of the spectrogram.  The 
process is illustrated in Figure 1.1.1. 
 

 
Figure 1.1.1: Rectangular time window, 
successively repositioned 
 
 The width of the time window determines 
the size of the FFT, and hence the frequency spacing 
of the resulting frequency response.  A wide time 
window produces closely spaced frequency points; 

while a narrow time window produces widely spaced 
frequency points.    
 This property is also expressed in the 
Fourier transform of the window shape.  Figure 1.1.2 
shows a rectangular window and its Fourier 
transform - which is a sinc function (sin(x)/x).  As the 
width of the time window is increased, the sinc 
function becomes narrower.  In the same way that the 
width of the time window defines the time resolution, 
the Fourier transform of the time window defines the 
frequency resolution.   
  

 
Figure 1.1.2: Rectangular time window and its 
FFT.  
 

1.2 Window Shape 
 The width of the Fourier transform of the 
time window determines the frequency resolution, 
but its shape is also significant.  The ringing that is 
evident in the sinc function is indicative of the 
ringing that occurs in the Fourier transform of 
rectangular-windowed data.  If a rectangular window 
was employed in a spectrogram, a single-frequency 
sine wave would be displayed as a series of 
frequencies, rather than a single, broadened 
frequency.  
 Figure 1.2.1 shows a windowed 1 kHz sine 
wave, and Figure 1.2.2 shows its Fourier transform. 
 

 
Figure 1.2.1:  1 kHz Sine Wave, Windowed by 5 
ms Rectangular Window 
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Figure 1.2.2:  Fourier Transform of Windowed 
Sine Wave Shown in Figure 1.2.1 
 
 If the frequency response shown in Figure 
1.2.2 were displayed as a column of a spectrogram, 
the display would mislead, by implying the presence 
of several sine waves of various frequencies.  It is 
desirable, then, to select a window shape that has a 
Fourier transform which is free of ringing.  By way 
of example, Figure 1.2.3 and 1.2.4 represent the same 
sine wave windowed by a Hann window. 
 

 
Figure 1.2.3:  Hann Windowed Sine Wave 
 

 
Figure 1.2.4: Fourier Transform of Hann 
Windowed Sine Wave 
 
 The ringing in the Fourier transform of the 
Hann window is much lower in level than that of the 
rectangular window, but is still very evident.  While 
each of the well-known window types has unique 
properties, all suffer from ringing, because they are 
all truncated.  A non-truncated window is better 
suited.  Figures 1.2.5 and 1.2.6 show a Gaussian 
windowed sine wave and its Fourier transform. 

 
Figure 1.2.5: Gaussian Windowed Sine Wave 
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Figure 1.2.6: Fourier Transform of Gaussian 
Windowed Sine Wave 
  
The complete lack of ringing in the Fourier transform 
of the Gaussian window makes it an excellent 
candidate for use in generating spectrogram displays.  
The next section lends further mathematical support 
to this observation. 

1.3 Heisenberg Uncertainty Principle 
 Spectrograms are subject to the generalized 
Heisenberg uncertainty principle, which states that 
the exact position and the exact momentum of an 
object cannot both be known simultaneously [6]. In 
its general form, the uncertainty principle can be 
extended to apply to any pair of conjugate variables. 
In this case time and frequency are analogous to 
position and momentum.  Specifically, the product of 
time resolution and frequency resolution cannot be 
less than 1/2. 
  To assess the time-bandwidth product of 
various windows and their Fourier transforms, the 
time and frequency resolutions must be quantified.  
This has been defined in the literature as the variance 
of the time window function, and the variance of its 
Fourier transform.  Let g(t) represent a window 
function, and let G(ω) be the Fourier Transform of 
g(t).  Treating the window function as a waveform, 
Parseval’s Theorem states that the energy of the 
function is: 
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The time resolution is defined as the temporal width, 
or variance of g(t): 
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The frequency resolution is defined as the spectral 
width, or variance of G(ω): 
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Figure 1.2.1: Center and width  
 
Now we can state the uncertainty principle in terms 
of the time and frequency resolution: 
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 This calculation is presented in detail in [7], 
[8], [9], and [10]. Gabor proved that the expression 
above only achieves the theoretical limit of 1/2 if the 
window function is Gaussian [10].  Combine this 
result with our earlier observation that the Fourier 
transform of the Gaussian window is completely free 
of ringing, and it emerges as the clear choice for an 
optimal spectrogram display. 
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 Gaussian window is described by the expression: A
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where σ2 is the variance of the window, which we 
have now defined as the nominal time resolution.  It 
has the unusual characteristic that its Fourier 
transform is also a Gaussian function.  In intuitive 
terms, it is the most selective window whose Fourier 
transform is completely free of ringing.   

 
Figure 1.2.2: Gaussian Window and Its Fourier 

In section 2.2.4, we introduce an efficient 
ethod 

2 SPECTROGRAM IMPLEMENTATION 

2.1 Algorithm 

 method is similar to the WFT 
thod,

he step-by-step algorithm is: 

 windowing that occurs in the time 
main w

Transform  
 
 
m for achieving an arbitrarily close 
approximation of the Gaussian function. 
 

 The new
me  the primary distinction being that the time 
windowing step is accomplished by complex 
convolution of the complex frequency response data 
[5].  Implementing windowing in this fashion allows 
frequency-dependent window widths to be 
implemented, and drastically reduces the number of 
FFTs that must be run. Further improvements in 
calculation speed, and close approximation of a 
Gaussian window are accomplished by implementing 
complex smoothing as an IIR filter. 
 
T
1.) Set 0t . 
 The
do hen complex smoothing is performed in the 
frequency domain is always centered about t=0.  
Therefore, the time window cannot be shifted to 
include different parts of the impulse response. 
Instead, the transfer function is shifted in time.  This 
is accomplished by progressively deducting latency 
from the transfer function in the form of frequency 
response phase shift.  The phase shift, Ф, as a 
function of delay, td, is: 

 dt⋅−= ωωφ )(    
 

2.) Window. 
 The windowing operation is accomplished 
by convolving the complex frequency response with 
a non-truncated Gaussian function.  This is 
accomplished efficiently by using an IIR 
approximation of the Gaussian function.  This step is 
detailed in section 2.2.2. 

 
3.) Display the Frequency Response Magnitude. 
 The frequency response represents a single 
column of pixels of the Spectrogram.  The magnitude 
of the frequency response is mapped to a color or 
gray scale value. 
 
4.) Increment 0t  and repeat. 
 
2.2 Complex Convolution 
 
 The phrase, “frequency smoothing”, is used 
to indicate that a low-pass filter has been applied to 
the sequence of numbers that represents the 
frequency response.  If the low-pass filter is applied 
first to the sequence of real parts, then to the 
sequence of imaginary parts, the result is complex 
smoothing.  Complex smoothing of the frequency 
response is equivalent to, and indistinguishable from, 
windowing in the time domain [5].  
 

Figure 2.2.1: Windowing and convolution duality 
(from [5]) 
 
 The typical means of implementing 
smoothing is to calculate a moving average, which is 
essentially an application of a finite impulse response 
(FIR) low-pass filter.  A less obvious means of 
implementing smoothing is to employ an infinite 
impulse response (IIR) filter.  The IIR approach has 
three main benefits: calculation speed, the absence of 
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window truncation, and the ability to closely 
approximate a Gaussian window. 

 
2.2.1 IIR Smoothing 
 
 An important attribute for a frequency-
domain smoothing function, g(t), is that it must be 
even; which is to say that g(t) = g(-t).  If it were odd, 
then it would exhibit the unfortunate behavior of 
changing the frequency of details in the response.  A 
narrow peak in a frequency response should be made 
broader by a smoothing filter - but it should not be 
moved. 
 Strictly speaking, then, all smoothing filters 
must be acausal, but this is actually of no concern.  
These filters will be applied to complete data sets as a 
post-processing operation - never as part of a real-
time process.  
 IIR filters are generally efficient for 
implementing minimum phase low-pass filters, which 
are both causal, and odd.  So, it may seem unusual to 
consider them for use as frequency smoothing filters.  
However, the fact that they are only applied in post-
processing means they can be run in reverse order on 
the frequency response data.  The phase lag incurred 
by an increasing-frequency execution of a filter can 
be exactly cancelled by a decreasing-frequency 
execution of the same filter.  The convolution of an 
IIR filter with its reversed-time version is always 
even. 
 Figure 2.2.1.1 shows the impulse response 
of a first-order lowpass filter, and figure 2.2.1.2 
shows the same filter convolved with its mirror 
image.  This illustrates how cascading forward and 
backward passes results in an even function.  Figures 
2.2.1.3 and 2.2.1.4 show the effect of cascading 
multiple passes of the even smoothing filter.  Each 
pass brings the window function closer to an ideal 
Gaussian window. 
 

 
Figure 2.2.1.1: First Order Smoothing Window 
 

 
Figure 2.2.1.2: Second Order Smoothing Window 
(First Order Smoothing Window Convolved with 
Its Mirror Image) 
 

 
Figure 2.2.1.3:  Two Cascaded Second Order 
Smoothing Windows, Compared to Ideal 
Gaussian Window 
 
 

 
Figure 2.2.1.4: Eight Cascaded Second Order 
Smoothing Windows, Compared to Ideal 
Gaussian Window 
 
 A Gaussian window can be approximated to 
an arbitrary degree of precision by executing multiple 
cascades of this filter.  While a rigorous proof of this 
statement would be possible, the graphical evidence 
should be sufficient to establish its probable truth.  
The approximation with 64 cascades is nearly a 
perfect match (see figure 2.2.1.5). 
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Figure 2.2.1.5: Sixty-Four Cascaded Second 
Order Smoothing Windows, Compared to Ideal 
Gaussian Window 
 
 While 64 cascades provides a near-perfect 
match, most of the time-frequency performance 
benefit can be realized with only four cascades.  At 
this level of precision, the cost of the IIR smoothing 
window is equivalent to an eight-tap FIR window - 
but it is effective regardless of the required width.  A 
degree of smoothing that would require a 64-tap FIR 
filter can be accomplished with the same eight tap 
IIR filter.  Furthermore, the window is non-truncated; 
which allows its Fourier transform to be completely 
free of ringing. 
 
2.2.2 Fractional Octave Smoothing  
 
 The IIR approach produces fractional-octave 
results if the frequency response data is 
logarithmically spaced.  If the frequency response 
data is linearly spaced, fractional-octave smoothing 
can be accomplished by scaling the filter parameters 
to frequency.  When applying the filter in the 
increasing-frequency direction, the corner frequency 
of the smoothing filter is increased for each 
successive frequency.  When applying the filter in the 
decreasing-frequency direction, the corner frequency 
of the filter is decreased for each successive 
frequency.   

3 EXAMPLE DISPLAYS 

3.1 Analytic Examples 
 
The figures in this section are examples of 
spectrograms of various calculated waveforms.  The 
waveforms were selected for their interest and to 
demonstrate the resolution of this new display type.  
The effects of varying the parameters of the display 
are also demonstrated. 

 
Figure 3.1.1: 1 kHz Sine Wave, Displayed with 
.25-Octave Resolution, 50 dB Scale 
 

 
Figure 3.1.2: Pure Impulse, Displayed with 2-
Octave Resolution, 50 dB Scale 
 

 
Figure 3.1.3: Pure Impulse, Displayed with 0.5-
Octave Resolution, 50 dB Scale 
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Figure 3.1.4: Two Impulses Separated by 2 ms, 2 
Octave Resolution, 50 dB Scale 
 

 
Figure 3.1.5: Two Impulses Separated by 2 ms, 
0.5-Octave Resolution, 50 dB Scale 
 

 
Figure 3.1.6: 3000 Hz Sine Wave, Gated by 2 ms 
Blackman Window, 2-Octave Resolution, 30 dB 
Scale 
 

 
Figure 3.1.7: 3000 Hz Sine Wave, Gated by 2 ms 
Blackman Window, 0.5-Octave Resolution, 30 dB 
Scale 
 

 
Figure 3.1.8: 3000Hz Burst summed with 5000 Hz, 
1 ms delayed, Burst 
 

 
Figure 3.1.9: 3000Hz Burst summed with 5000 Hz, 
1 ms delayed, Burst, 2-Octave Resolution, 30 dB 
Scale 
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Figure 3.1.10: 3000Hz Burst summed with 5000 
Hz, 1 ms delayed, Burst, 0.5-Octave Resolution, 30 
dB Scale 
 
3.2 Loudspeaker Response Examples 
 
 The example below shows the effect of 
changing the scale of the display.  By selecting a 
larger (50 dB) scale, the fine details of the 
loudspeaker’s transient decay are emphasized, while 
a smaller (30 dB) scale might be preferred in some 
cases, because it emphasizes the strong aberrations 
and suppresses the weak aberrations. 
 The transient response displayed in this 
example shows the combined effects of compression 
driver phase plug time smear, edge diffraction, horn 
resonance, and cone resonance.  Of these 
mechanisms, all but edge diffraction can be improved 
through the use of preconditioning filters.  Figure 
3.3.3 shows the improvement that is possible. 
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Figure 3.2.1: 2-Way Horn Loaded Loudspeaker, 
2-Octave Resolution, 30 dB Scale 
 

 
Figure 3.2.2: 2-Way Horn Loaded Loudspeaker, 
2-Octave Resolution, 50 dB Scale 
 

 
Figure 3.3.3: 2-Way Horn Loudspeaker with 
Preconditioning Filters, 2-Octave Resolution, 30 
dB Scale 
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